PDB 4NY0 deposited: 2013-12-10 modified: 2014-03-12
Title Crystal structure of FERM domain of human focal adhesion kinase
Authors Arold, S.T., Arsenieva, D., Bouceba, T., Boutterin, M.C., Brami-Cherrier, K., Gasmi, L., Gervasi, N., Girault, J.A., Kadare, G., Leonard, P.G., Ortega, A., Seantier, B., Walkiewicz, K.
Structure factors resolution 2.8 rfactor 0.1933 rfree 0.2302
DPI 0.66 theoretical min: 0.43

Focal adhesion kinase (FAK) controls adhesion-dependent cell motility, survival, and proliferation. FAK has kinase-dependent and kinase-independent functions, both of which play major roles in embryogenesis and tumor invasiveness. The precise mechanisms of FAK activation are not known. Using x-ray crystallography, small angle x-ray scattering, and biochemical and functional analyses, we show that the key step for activation of FAK's kinase-dependent functions--autophosphorylation of tyrosine-397--requires site-specific dimerization of FAK. The dimers form via the association of the N-terminal FERM domain of FAK and are stabilized by an interaction between FERM and the C-terminal FAT domain. FAT binds to a basic motif on FERM that regulates co-activation and nuclear localization. FAK dimerization requires local enrichment, which occurs specifically at focal adhesions. Paxillin plays a dual role, by recruiting FAK to focal adhesions and by reinforcing the FAT:FERM interaction. Our results provide a structural and mechanistic framework to explain how FAK combines multiple stimuli into a site-specific function. The dimer interfaces we describe are promising targets for blocking FAK activation.

Embo J. 2014 Feb; 33(4):356-370 doi:10.1002/embj.201386399

Cross References
Database source Identifier Description
PubMed 24480479 EMJODG
Biomolecule Structure Assembly Serial Assembly Type Conformational State Chains Ligands Atoms
4NY0/1 4NY0 1 dimer 0 2 0 4912
4NY0/2 4NY0 2 dimer 0 2 0 4935